Billiards in Finsler and Minkowski geometries
نویسندگان
چکیده
We begin the study of billiard dynamics in Finsler geometry. We deduce the Finsler billiard reflection law from the “least action principle”, and extend the basic properties of Riemannian and Euclidean billiards to the Finsler and Minkowski settings, respectively. We prove that the Finsler billiard map is a symplectomorphism, and compute the mean free path of the Finsler billiard ball. For the planar Minkowski billiard we obtain the mirror equation, and extend the Mather’s non-existence of caustics result. We establish an orbit-to-orbit duality for Minkowski billiards. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Remarks on Magnetic Flows and Magnetic Billiards, Finsler Metrics and a Magnetic Analog of Hilbert’s Fourth Problem
We interpret magnetic billiards as Finsler ones and describe an analog of the string construction for magnetic billiards. Finsler billiards for which the law “angle of incidence equals angle of reflection” are described. We characterize the Finsler metrics in the plane whose geodesics are circles of a fixed radius. This is a magnetic analog of Hilbert’s fourth problem asking to describe the Fin...
متن کاملA Class of Anisotropic (finsler-) Space-time Geometries
A particular Finsler-metric proposed in [1,2] and describing a geometry with a preferred null direction is characterized here as belonging to a subclass contained in a larger class of Finsler-metrics with one or more preferred directions (null, spaceor timelike). The metrics are classified according to their group of isometries. These turn out to be isomorphic to subgroups of the Poincaré (Lore...
متن کاملHomotheties of Finsler Manifolds *
We give a new and complete proof of the following theorem, discovered by Detlef Laugwitz: (forward) complete and connected finite dimensional Finsler manifolds admitting a proper homothety are Minkowski vector spaces. More precisely, we show that under these hypotheses the Finsler manifold is isometric to the tangent Minkowski vector space of the fixed point of the homothety via the exponential...
متن کاملJa n 20 09 Semi - indefinite - inner - product and generalized Minkowski spaces
In this paper we parallelly build up the theories of normed linear spaces and of linear spaces with indefinite metric, called also Minkowski spaces for finite dimensions in the literature. In the first part of this paper we collect the common properties of the semi-and indefinite-inner-products and define the semi-indefinite-inner-product and the corresponding structure, the semi-indefinite-inn...
متن کاملUmbilical hypersurfaces of Minkowski spaces
In this paper, by the Gauss equation of the induced Chern connection for Finsler submanifolds, we prove that if M is an umbilical hypersurface of a Minkowski space (V , F ), then either M is a Riemannian space form or a locally Minkowski space. AMS subject classifications: 53C60, 53C40
متن کامل